Samuel Rodrigues Isaza
++
función lineal
En geometría analítica y álgebra elemental, una función lineal es una función polinómica de primer grado, es decir, una función cuya representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:
donde y son constantes reales y es una variable real. La constante determina la pendiente o inclinación de la recta, y la constante determina el punto de corte de la recta con el eje vertical .
En el contexto del análisis matemático, las funciones lineales son aquellas que pasan por el origen de coordenadas, donde , de la forma:
mientras que llaman función afín a la que tiene la forma:
Ejemplo[editar]
Una función lineal de una única variable dependiente es de la forma:que se conoce como ecuación de la recta en el plano , .En la figura se ven dos rectas, que corresponden a las ecuaciones lineales siguientes:en esta recta el parámetro es igual a (corresponde al valor de la pendiente de la recta), es decir, cuando aumentamos en una unidad entonces aumenta en unidad, el valor de es 2, luego la recta corta el eje en el punto .En la ecuación:la pendiente de la recta es el parámetro , es decir, cuando el valor de aumenta en una unidad, el valor de disminuye en una unidad; el corte con el eje es en , dado que el valor de .En una recta el valor de corresponde al ángulo de inclinación de la recta con el eje de las a través de la expresión:- .
Funciones lineales de diversas variables[editar]
Las funciones lineales de diversas variables admiten también interpretaciones geométricas. Así una función lineal de dos variables de la formarepresenta un plano y una funciónrepresenta una hipersuperficie plana de dimensión n y pasa por el origen de coordenadas en un espacio (n + 1)-dimensional.- tomado de:
- https://es.wikipedia.org/wiki/Funci%C3%B3n_lineal
-
https://www.youtube.com/watch?v=AoZpzAoC1Qg
No hay comentarios:
Publicar un comentario